HIGHLY SYMMETRICAL CAGE COMPOUNDS, IN WHICH ALL SIX, EIGHT OR TEN LONE PAIRS ON NITROGEN ATOMS AT BRIDGEHEAD OR INTERVENING PYRIDINE RINGS ARE ORIENTED TOWARD THE CENTRAL CAVITY¹

Hiroyuki Takemura^{*a}, Teruo Shinmyozu^b, and Takahiko Inazu^{*b}

a Laboratory of Chemistry, College of Education, Kyushu University, Ropponmatsu 4-2-1, Chuo-ku, Fukuoka, 810 Japan.

 Department of Chemistry, Faculty of Science, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812 Japan.

Summary: Three dimensional cryptands $\underline{2}$, $\underline{3}$, $\underline{4}$ were synthesized in one step. The compounds $\underline{3}$ and $\underline{4}$ were obtained as their alkali metal cryptates. Complexation ability was enhanced by increasing the number of intervening pyridine rings.

We previously reported the synthesis and structural elucidation of 1, "hexametaxylylenetetramine".²

X-ray analysis showed that <u>1</u> had a rigid and highly symmetrical binding site, but the cavity size was too small to include guest species except protons.

If any or all benzene rings in $\underline{1}$ are replaced by heterocycles with a lone pair such as pyridine, the inclusion ability may be improved. From the molecular model consideration(CPK) and X-ray analysis of $\underline{1}$, each cage compound $\underline{2} - \underline{4}$ has a cavity to include guest species: e.g., $\underline{4}$ has a cavity 3.8 Å in diameter.

In this communication, we report a

Fig. 1.

synthesis and properties of the cage compounds 2, 3, and 4.

Scheme 1

<u>Synthesis</u>³: A typical procedure is as follows(synthesis of $\underline{3}$).

In a 1-1, four-necked flask, a mixture of 2,6-bis(aminomethyl)benzene (4.0g, 0.03mol), 250ml of CH₂Cl₂ and 30ml of 5N KOH solution was heated under reflux with vigorous stirring. A solution of 2,6-bis(bromomethyl)pyridine(6.3g, 0.023mol) in 150ml of CH₂Cl₂ was added to the mixture over a period of 5hr and additional heating was continued for 2hr. The organic phase was separated and dried over K2CO3. Evaporation of the solvent afforded a yellow oil and the oil was dissolved into a small amount of a mixture of CHCl₃ and C₆H₆. After several hours, precipitated colorless granules were collected by filtration. Recrystallization from CH₂Cl₂-C₆H₆ In these reactions, the desired macrocycles 2, 3, 3afforded 152mg of 3•KOH. and 4 were the only isolable products in 8.3%, 4.3% and 2.4% yield 4,5, respectively, and no other possible isomers⁶ were detected. Surprisingly, $\underline{3}$ and $\underline{4}$ were obtained as metal cryptates(Scheme 1⁷). The source of potassium ion is the KOH added to neutralize generating HBr Fast atom bombardment mass spectra of the during the coupling reaction. cryptates 3.K⁺ and 4.K⁺ showed (M+K)⁺ peaks, and addition of 0.1N HCl into glycerol matrix reduced the intensity of the $(M+K)^+$ peaks, but increased the intensity of protonated molecular peaks (M+H)*.

In contrast to $\underline{3}^8$ or $\underline{4}^8$, metal free $\underline{2}^8$ was obtained. In general, oxygen is superior to nitrogen as a ligand atom for the alkali metal complexation.⁹

Interestingly, despite the donor atoms in these macrocycles being only nitrogens, strong alkali metal complexation was observed. This may be due to the three-dimensional and highly symmetrical arrangement of nitrogen atoms in the macrocycles to very effectively include spherical alkali metal ions. Demetallation of the cryptate $\underline{3} \cdot K^+$ was achieved by heating it with 3N HCl. An aqueous solution of the hydrochloride, $\underline{3} \cdot 4$ HCl, was treated with an excessive amount of strong base, benzyltrimethylammonium hydroxide. However, the product was not the desired proton-free $\underline{3}$ but its mono-protonated salt, $\underline{3} \cdot$ HCl (Scheme 2). When the same treatment was applied to the $\underline{4} \cdot K^+$ with 3N HNO₃, $\underline{4} \cdot$ HNO₃ was obtained.

IR spectrum of the mono-nitrate, $\underline{4} \cdot \text{HNO}_3$, showed a strong band at 1340 cm^{-1} . In ¹H-NMR(60MHz, CDCl₃), chemical shift of the methylene protons of $\underline{4} \cdot \text{HNO}_3$ (δ , 3.83ppm) is lower than that of the corresponding methylene protons of 2 (δ , 3.53ppm). After ion exchange resin(OH form) treatment of $\underline{4} \cdot \text{HNO}_3$, the strong band at 1340 cm^{-1} disappeared, but the chemical shift of the methylene protons was identical with that of $\underline{4} \cdot \text{HNO}_3$. The final proton could not be removed. The absorption of the methylene protons of $\underline{3} \cdot \text{HCl}$ or $\underline{4} \cdot \text{HNO}_3$ was a sharp singlet at room temperature. Thus, the proton within the cavity may be rapidly flitting among the nitrogen atoms in the NMR time scale.

Deprotonation of <u>3</u>•HCl or <u>4</u>•HNO₃ was possible only in the presence of M⁺ and OH⁻, and the metal complex was regenerated(Scheme 2). The number of remaining protons was confirmed by the integration of t-butyl protons of p-tert-butylbenzenesulfonate of <u>3</u>, $p-C_4H_9-C_6H_4SO_3^{-} \cdot (\underline{3}+H)^+$ in the NMR spectrum(Scheme 2).

Metal picrate extraction experiments were carried out to estimate metal ion complexation ability of these macrocycles. Metal picrates(Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺) in basic aqueous phase were extracted quantitatively into organic phase(CH₂Cl₂ or CHCl₃) in the presence of $\underline{3} \cdot \mathrm{H}^+$ or $\underline{4} \cdot \mathrm{H}^+$. But $\underline{1}$ did not extract any of the metal ions and $\underline{2}$ showed only a moderate tendency.

Further studies on the mono-protonated salts, heavy metal complexes, and anion complexation of these compounds are now in progress.¹⁰ <u>Acknowledgement</u>. We are grateful to Dr. R. Isobe of Kyushu University, Faculty of Pharmaceutical Sciences for FAB mass spectra measurements.

References and Notes

- Presented at The 18th Symposium on Structural Organic Chemistry, Toyama, October, 1985; Abstr. No.B2-09.
- H.Takemura, T. Hirakawa, T. Shinmyozu, and T. Inazu, Tetrahedron Lett., 25, 5053(1984).
- 3a. To synthesize these cage compounds, we employed the one step coupling procedure, which is much simpler than those of other highly structured cryptands.
- 3b. E.Graf and J.-M. Lehn, J. Am. Chem. Soc., <u>97</u>, 5022(1975), ibid., <u>98</u>, 6403(1976).
- 3c. F. P. Schmidtchen, Angew. Chem. Int. Ed. Engl., 16, 720(1977).
- The yields are based on the bromides.

- 5a. In the preparation of <u>4</u>, 2,6-bis(aminomethyl)pyridine dihydrochloride was employed instead of its free base, because the free amine(colorless crystals, mp 43.2-46.2^oC; in ref. 5b described as an oily substance) is very misclble with water and the extraction procedure reduced the yield.
- 5b. E. Buhleier, W. Wehner, and F. Vögtle, Justus Liebigs Ann. Chem., <u>1978</u>, 537.
- 6. The NMR data of 2, 3 and 4 exclude other possible cage structures such as shown in Fig. 2. Furthermore, preliminary X-ray analysis of $3 \cdot \text{KClO}_4$ shows that K⁺ ion locates in the central cavity of 3. To be published.
- 7a. When the reaction was carried out in refluxing dioxane, the desired <u>3</u> was not obtained without KOH treatment of the resultant product.
- 7b. When a phase transfer catalyst(n-Bu₄NI) was employed, KI cryptate, <u>3</u>•KI, was obtained instead of KOH cryptate, <u>3</u>•KOH, and yield was slightly improved.
- 8a. <u>2</u>: mp>378^OC(dec, corr). ¹H-NMR(60MHz,δ,CDCl₃) 3.46(16H, s, benzene-CH₂-), 3.53(8H, s, pyridine-CH₂-), 8.30(4H, bs, benzene-H), 7.05(12H, s, benzene-H), 6.9-7.6(6H, AB₂, pyridine-H). EI-MS, m/z 682(M⁺). Anal. Calcd. for C₄₆H₄₆N₆:C, 80.91;H, 6.79;N, 12.31. Found:C, 80.63;H, 6.76;N, 12.20.
- 8b. <u>3</u>•1/2K₂CO₃: mp>305^OC(dec). ¹H-NMR(60MHz,δ,CDCl₃) 3.41(8H, s, benzene-CH₂-), 3.58(16H, s, pyridine-CH₂-), 7.20-7.84(6H, AB₂, pyridine-H), 7.25(6H, m, benzene-H), 6.95(2H, bs, benzene-H). EI-MS, m/z 684(M⁺). FAB-MS, m/z 723[(M+K)⁺]. <u>3</u>•4HCl: Anal.Calcd. for C₄₄H₄₄N₈•4HCl•9H₂O;C, 53.23;H, 6.70;N, 11.29.

Found;C, 53.13;H, 6.61;N, 11.26.

- 8c. <u>4</u>•1/2K₂CO₃: mp>300^OC(dec), ¹H-NMR(90MHz, &, CDCl₃), 3.58(24H, s, -CH₂-), 7.05-7.72(18H, AB₂,pyridine-H).EI-MS, m/z 686(M⁺). FAB-MS, m/z 725[(M+K)⁺]. <u>4</u>•Cs⁺:Anal. Calcd. for C₄₂H₄₂N₁₀•CsCl•H₂O;C, 55.48;H, 5.32;N,15.40. Found;C, 55.84;H, 5.28;N, 15.69.
- M. Hirooka, H. Yanagida, M. Ohara, and K. Koga, "Host-Guest Chemistry", Kodan-sha, p128, 1984.
- 10. Properties and structures of the mono-protonated salts will be described elsewhere.

	х	^Ү 1	^Y 2	¥3	¥4
	N	Сн	Сн	Сн	Сн
2	СН	N	N	СН	СН
3	СН	N	СН	N	Сн
ł	N	N	N	N	N

Fig. 2.

(Received in Japan 19 August 1987)